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Abstract

“"With air trafic movements at a high level, techniques to assist air traffic man-
agement using computers are being investigated. One technique in particular being
studied is the early adjustment of the speed of arriving aircraft so that the rate of flow
near to the airports is closely matched to landing capacity.

. A Speed Control Adviser has been developed which allocates a landing time to each
inbound aircraft. Once the estimated landing time is known, the speed the aircraft
must fly needs to be calculated. This cannot be done directly and interpolation using
a suitable polynomial approximation is used.

This memorandum investigates four polynomials and examines their effectiveness
at providing a good estimate with minimum computation.
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1 Introduction

Air traffic movements in the London area are at a high level and are expected to increase.
Techniques involving the use of computer assistance are being investigated to enable air
traffic management and control systems to handle this increase. One technique in par-
ticular being studied by the Terminal Control Systems Development Group (TCSDG) in
AD4 Division of RSRE, is the early adjustment of the speed of arriving aircraft so that
the rate of flow near to the airports is closely matched to landing capacity [1].

The TCSDG is developing a Speed Control Advisor (SCA) (2,3]. This uses an algorithm
which includes the allocation of a landing slot to each inbound aircraft based on a specified
runway separation. The calibrated airspeed (CAS) required for descent in order that the
slot time is achieved needs to be computed. That is, given the time over which an aircraft
must fly from A to B (usually descent) at what speed must it travel?

The speed value needed to cause an aircraft to take a specified time to fly from some
point A to another point B along a specified route through a specified wind field cannot
be calculated directly. The reasons for this are that aircraft normally operate at constant
CAS or constant Mach Number rather than at constant true air speed (TAS), that different
aircraft types perform differently especially in descent and turns, and that wind speed and
direction can vary rapidly with change of altitude. However, the time taken to fly from A
to B at a specified CAS can be calculated, and by doing this calculation for several speed
values and using some form of interpolation, the required speed can be found.

The time to fly from A to B can be expressed as
B
Y
4 il

V=V +W

where

V; is the ground velocity vector, V; is the true velocity vector and W is the wind vector.
V, is assumed to head in a direction such that V; points along the route. V; is a function
of CAS and altitude, or of Mach number and altitude, depending on the phase of flight.

A set of procedures for performing these time calculations was written for use in the
TCSDG real-time system, and was available for use in this investigation.

For each aircraft, the SCA finds the time taken to descend at maximum speed, minimum
speed and preferred speed (the speed at which the aircraft would like to descend). These
known points are substituted into a polynomial approximation to give an estimate (chosen
speed) for the required CAS (target speed). The time to fly the route portion at the chosen
speed is calculated using the TCSDG procedures, and is compared to the target time. If
the difference is not within acceptable limits then further iterations are needed. As each
calculation of time is lengthy it is important to find a polynomial that gives a good estimate
quickly.

This note investigates four approximations that could be used and examines their effec-
tiveness at providing a good estimate with minimum co.nputation.
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2 The Approximations

For an aircraft flying a typical descent profile, the relationship between speed and time is
represented by the actual data curve in Figs(1)-(4),(10)-(12). (See section 4 for a detailed
description of descent profile used).

Four approximations to this curve have been tried. In the derivations that follow the
notation used is

Iy = mazcas Ty = timeto fly descent at mazcas

I, = mincas T, = time to fly descent at mincas

I, = prefcas T, = timeto fly descent at prefcas

I. = chosen speed T, = time to fly descent at chosen speed
I; = target speed T, = target time

where I, < I, < Iy and Ty < T, < T, (since it takes longer to fly at a slower speed).

2.1 Approximation I

Initially, only two known points were used ie (/;,Ty)(,,T,) in finding a suitable approxi-
mation. The first assumption made was that the relationship between speed and time was
inversely proportional

I=k/t (k const)

We can find some constant k such that
Ip-1, =k(1/Ty~1/T,)
= k(T. - T()/(T4T)
> k= (Iy - L) T./(T, - T)) (1)
Also, given that I. is proportional to T, then
Ic - 1! = k(]/T( - I/Tf)
= k(Ty ~ T)/(T;T)
= I, = I+ k(Ty - Ty)/(T/T)
Substituting for k from (1) gives
I, =1+ (I - LY Ty - T)TyT/TyTy (T, - Ty)
=1Ip+ Iy - [Ty - T)T,/To(Te ~ Ty)
Fig(1) shows the curve this equation represents plotted against the data being modelled.

The assumption that I = k/t appears to provide a reasonable model and this approxima-
tion was tested along with the others to see what sort of estimate would be produced.

The use of only two points is not ideal. 1t is more likely that a better fit will be obtained
with more points and as three are being calculated already (ie preferred speed and time),
three should be used.




2.2 Approximation II

Approximation II is an extension of approximation I which makes use of the three points.
Speed is still assumed to be inversely proportional to time but as well as the curve shaping
constant k, two further constants, a and b, are included which allow the curve to be moved
to fit the data.

k
1+a:—(t+b) (2)

We have three points (I, Ty)(J, Tp) and (I,,T,) which when substituted into (2) give the
equations

I,+a=k/(T,+b)
Iy +a=k/(T,+b)
IL.+a=k/(T,+b)

These equations can be solved to give the following values for b ,e and k.

IiTp(Te - Tp) + LT (Ty - T)) + I.T.(T, - Ty)
II(TP - Te) + L(T. - Ty)+ I(Ty - Tp)
L(b+Ty) - I(b+Ty)
(Tf -T)
k = (Ip+a)(Ty+b)

b =

a

which are substituted into (2) to give an approximation of speed given time. The three
points (I;,Ts)(1;,Tp) and (I,,T.) must be distinct in order to provide three solvable
simultaneous equations.

Fig(2) shows the curve this equation represents plotted against the data being modelled.

2.3 Approximation III

A possible numerical analysis solution to the problem of fitting a function to some data
points is to use the Lagrange polynomial [4,5]. This is a polynomial that can be constructed
in such a way that it passes through each known data point and is of degree less than or
equal to the number of points provided minus one. For example if we know three points,
the Lagrange polynomial which passes through these points will be quadratic or linear.

2.3.1 Construction of the Lagrange polynomial

Assume that, given n+ 1 distinct pointst, ({ = 0,1,...,n) on the interval ¥ with function
values f(t,) = f; (i = 0,1,...,n) we can construct a polynomial of degree < n which
passes through the n + 1 points.

The Lagrange method is to begin by expressing this polynomial as
I{t) = Lo(t)fo+ Li{t) fr + .. .+ La() fo

where each Lx(t) (k=0,1,...,n) is a polynomial of degree not exceeding n. In order for
the polynomial to pass through the n + 1 points given, the following condition must hold

It)= fi (i=0,1....,n)




b

ie. at any of the given points, the Lagrange polynomial value is equal to the actual function
value. This condition holds if

1 k=1
Lk(t|)={ 0 k#:

So for example
Itt) = Lo(t))fo+ Litt)fi + ...+ La(t1) fn
=0«fo+1*f1+0xfo+...40xf,
=fi
The family of polynomials which satisfy the requirements above are of the form
o (t=to)t—ty) .t =ty )t —tryr) .. (t = ta)
Li(t) =
(tr = to)(te — t1) .. (tk = te— 1 )(tk — trsr) - - (te — tn)
Note that the numerator of L(t) is a product of all factors of the form (¢ ~ ¢;) except
(2 — ti). Since each Li(t) is a polynomial of degree n and since

I(t) = Lo(t) fo + L1(t) fy + . .. + Lan(t) fn

then I(t) will be a polynomial of degree < n.

2.3.2 Use of the Lagrange polynomial

We have three known points (I, Ty)(I,, Tp)(Is,T,) so n = 2 and the Lagrange polynomial
can be constructed as follows

I(t) = Lo(t)Iy + Li(t) I + Ln(t) I,

where

_ (=T (T, _ _(=Tp)(e-T.)
Lo(t) = =y L) = mormon)

(
(- T))(~T)
La(t) = 2 ——2
(Tﬂ - TI)(Ts - Tp)
Fig(3) shows the curve this equation represents plotted against the data being modelled.
It is clearly a reasonable fit and should provide a good estimate of the speed given time.

2.4 Approximation IV

The fourth approximation assumes that the speed/time relationship can be represented
by an inverse cubic. o o R
0 1 2
=745+ (3)
We have three points (I, Ty)(1,, Tp) and (I,,T.) which when substituted into the inverse
cubic give the equations

Iy = ao/Ty + a1 /T} + a2/T} (4)
I, = ao/T, + a1 /T2 + a2/ T} (5)
I, = ao/T. + a1/T} + a2/ T? (6)

These can be solved to give values for ag , a; and a; which are substituted into (3) to
give an approximation for speed given time. The three points (I, Ty)(1,, Tp) and (1,,T,)
must be distinct in order to provide three solvable simultaneous equations.




2.4.1 Calculation of ap , a; , a3

We can write eqns (4)-(6) as

Iy /Ty 1/T; 1/T} ap
L {=| YT, YT} 1T} a;
I, 1/T. 1T} 1T} a;
represented by _
I=Ta

and so if T/ is the inverse of T then

The inverse of T is defined as
T =adj T/ det T

where adj T is the transpose of the matrix of cofactors of T and det T is the determinant
of T. Aslong as Ty # 1, # T, then det T will not equal zero. From this we can find

ag , e and as

Let B be the matrix of cofactors of T. Then

I U W | 11
05 R 5 VR 1% 0B o PR % v B 5
N W 1 S U
B= T{ET,? T{5T3 77 T T, T, T2 T{5T.
1 1 1
—_— e —— —_—— + ——— —
TITE T TITR T, T T, TTR T OTI,

Tf(Tp - T} Ti(Tf - T;?) T}(T,T;? - TT,)
THT. - Ty) THT} - T2) TAT,T? - TIT)
TTy - T,) THTZ - T}) THT,T} - TET))

1
TITST?

The ady T is the transpose of the matrix of cofactors, that is the transpose of B.

Hence adj T =
1 Do L-To DT
TS | rothns - 151 130k oy 13005 1
[7pe THUT.TS - TiT,) THT,(T? - TiT.) THT,T} - TTy)
The inverse of T is equal to adj T/det T

TIT3T?
det T = - =
THT, - T.) + TX(T. = Ty) + T*(Ty - Tp)
We have
T'I=a
and so
o I THT, - To) + LTHTe - Ty) + LTYT; ~ Tp)
°T TTHT, - T) + TA(T, - Ty) + TA(Ty - Tp)
o = I THTE - T2) + LTYT} - T?) + LTX(T? - T})
T}(Tp - T,) + Tg(Ta - T!) + T}(T! - TP)
o= LTHT.T} ~ TXTy) + LT (TyTE ~ T}T.) + LTXT,T} - T2Ty)
THT, - T) + THT. - T)) + THTs - T)

Fig(4) shows the curve represented by the inverse cubic compared to the actual data.




3 Running the experiment

The aim of this investigation was to find the best approximation modelling the relationship
between speed and time. It is possible to calculate the time taken to fly a descent given
the speed by using a series of complex prediction procedures. This process is lengthy so
the best approximation will be one that takes minimum calls of these procedures to deliver
a reasonable estimate (ie. one within specified limits) of speed given time .

One program for each algorithm was written in CORAL 66. The programs were basically
the same but had slight variations according to the algorithm being used. The programs
included calls to the prediction procedures which calculate the time to fly the descent
given the speed. The route portion chosen was of an aircraft approaching Heathrow from
the North descending from a height of 31,000ft to 8,000ft (stack base level). The descent
profile consisted of a cruise section at the Mach equivalent of 290k followed by a descent
at the chosen speed. This descent was subject to minimum calibrated airspeeds at defined
levels illustrated in Fig(5).

Initially, the times taken to fly the route portion at max speed, min speed and preferred
speed were found, providing the three points (360, 1153),(210, 1569), (260, 1333). These
were used to find the constants in each algorithm. A target time, T; . was chosen ie.
the time the aircraft had to fly the descent and an estimate for the speed required to fly
the descent was found by substituting the target time into each approximation. Having
obtained this value for the speed, the investigation proceeded to see how reasonable it
was.

The prediction procedures were called to calculate the actual time an aircraft would take
given this estimated speed. If the difference between actual time and target time was less
than 5 secs, the estimated speed was returned as the chosen speed, I. ,(the s; eed needed to
fly the descent). H the difference was greater than 5 secs, further iterations were required.

3.1 Further iterations

The calculation of the time to fly the route portion at estimated speed provided an extra
point (I.,T.). Since T, was nearer to the target time than at least one of the end points.
it was used in the further iterations to obtain a better estimated speed.

3.1.1 Approximation I

The obvious method to use with this type of approximation was to shorten the interval
over which the interpolation was taking place. This was achieved using the secant method.

3.1.2 Approximation I1

The method used with this approximation shortened the interval over which interpolation
was taking place. In this case the interval was over I, to Iy with I, in between. Moving
of the end points had to take into account all three. The extra point (., T.) was taken to
be the mid point of the next three points used since a better fit was achieved. The end
points were then picked accordingly.




3.1.3 Approximation III
The extra point (/.,T.) was used in addition to the three original points, to find the next

order Lagrange approximation eg. one with degree < 4. This gave a function that passed
through the four known points.

3.1.4 Approximation IV

The method used with this inverse cubic approximation was the same as for approximation
1L

3.2 Output

Each program was run with target times ranging from 1165 to 1548 secs which produced
speeds between 214 and 329 knots.

Target
time 1165 1195 1236 1278 1319 1361 1403 1444 1486 1527 1548

Speed 329 309 290 276 264 253 244 236 228 219 214

The target times were chosen to give a fairly even spread over the range between T, and

T..

The output recorded for each target time was

e estimated speed

actual time for descent at estimated speed

final chosen speed and time

e number of iterations required

The algorithms were compared by looking at the number of iterations required to achieve
a good estimate. This shows how often the prediction procedures were called giving an
indication of how good the algorithm was and how closely it modelled the speed time
relationship.

The Extended inverse proportional, the Lagrange and the Inverse cubic approximations
were further examined to see how the choice of the third point (initially the preferred cas)
affected the reasonableness of the estimate.

4 Results

A “reasonable estimate” of the speed was defined as one whose associated time to fly the
route portion was within 5secs of the target time. Every computation of an estimated
speed, including the first, was considered to be an iteration. The number of iterations
required for each algorithm are shown in Fig(6).

From this it can be seen that the Extended inverse proportional, Inverse cubic and La-
grange algorithms provide good approximations. taking at most 2 iterations to give a
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reasonable estimate. The Inverse proportioral algorithm provides a fair approximation,
taking 3 iterations at most speeds but less near each end point.

It can be seen that the algorithms using three points provide a better model than the
Inverse proportional, especially around the preferred speed mark. This is to be expected
since these three polynomial approximations are constructed in such a way that they pass
through the three original points ({7, T;)({,, Tp)(/,, Ts). The implication of this is that the
choice of preferred speed has an effect on the accuracy of the model, the question being
“How much 7.

In order to study this effect, the experiment was run with preferred speeds of 230k, 275k
and 320k. Figs (7),(8),(9 show the difference between the number of iterations required
for each algorithm.

The fig..es show that for speeds around the preferred speed and two end points, the
estimate is close to the target. Between these points, the estimates get worse as the
models become less accurate.

With a preferred speed of 230k (Fig(7}), the algorithms are providing reasonable models.
taking mostly two iterations although the Inverse cubic and Lagrange take three iterations
at speeds just below 340k.

With a preferred speed of 275k (Fig{8)), the actual midway point between the end speeds,
all three algorithms provide good approximations taking no more than two iterations.

A preferred speed of 320k (Fig(9)) gives rise to the least accurate estimates. The Lagrange
algorithm is particularly affected by this high preferred speed taking three or four iterations
to converge on speeds away from the end points. The Inverse cubic and Extended inverse
proportional are also affected but not to such a great extent.

These results are illustrated by Figs(10),(11) and (12} which show the graphs of actual data
along with the graphs of the Extended inverse proportional. Inverse cubic and Lagrange
algorithms with differing preferred speeds. These demonstrate the effectiveness of each
algorithm to provide a model of the actual data.

5 Conclusions

The four possible relationships considered between speed and time were

1. inverse proportional ie ] = k/t
2. extended inverse proportional ie [ + a = k/(t + 8)
3. quadratic {modelled with three points}) using the Lagrange polynomial

4. inverse cubic ie I = ag/t + a;/t* + ap/t?

The algorithms were set up using three points of data, the minimum, maximum and
preferred speeds and their associated time of descents. A target time was input into each
algorithm and an estimate for speed found. The time taken to descend at this estimated
speed was then compared with the target time. A reasonable estimate was defined to be
one within 5secs of the target time.

The inverse proportional relationship provided a rough model and gave a reasonable esti-
mate within three iterations.




The Lagrange polynomial provided a good model, giving a reasonable estimate within
two or three iterations using the low to centre preferred speeds. However, the choice of a
high preferred speed had a large effect on the first estimate and up to four iterations were
required.

The inverse cubic also provided a good model, giving a reasonable estimate within two or
three iterations using any of the preferred speeds.

The extended inverse proportional provided the best model of the relationship between
speed and time. The algorithm took the same number of iterations or less than the other
approximations and was not affected unduly by the change in preferred speed. The fit
of the extended inverse proportional to the actual data points was the closest of all the
algorithms (Fig(12)), and had the computational advantage that its constants were smaller
than those for the inverse cubic.

This algorithm has now been incorporated into the Speed Control Adviser. It has been
found that the target CAS is normally given directly (to within required tolerance lev-
els) although occasionally two or three iterations are necessary. The extended inverse
proportional algorithm is therefore working effectively and keeping processing time to a
minimum.
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